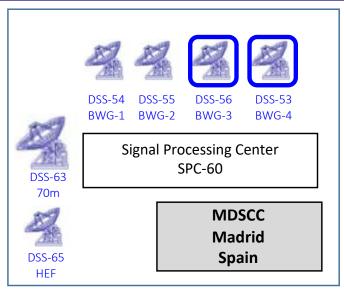
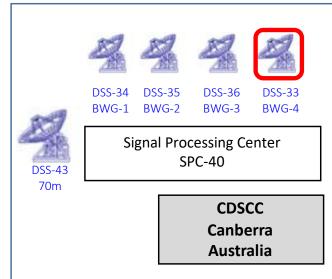

# Allocation of Deep Space Network Ground System Tracking and Communications Assets During the 2020-2021 Timeframe of the "Mars Armada"


Stephen M. Lichten, Douglas S. Abraham, Belinda Arroyo, Sami W. Asmar\*, Julia L. Bell, Charles D. Edwards
\*Presenter: Sami W. Asmar






#### NASA Deep Space Network (DSN)







Goldstone, USA

Madrid, Spain

Network Operations
Control Center

JPL, Pasadena

Canberra, Australia

New Antennas Not Completed Yet





- 70m antennas (3)
- 34m antennas (9)
  - DSS-65 retirement in 2020; new antennas DSS-56 & DSS-53 to be completed in 2020



## Deep Space Network (DSN) Loading in 2020-2021

- The DSN has currently 12 operational antennas in three DSCCs
- At any time, the DSN supports 35-40 missions
- DSN scheduling processes and tools match mission needs to DSN antenna availability
  - These tools work best when missions are distributed evenly across the sky and across the DSN complexes
  - When multiple missions are clustered (e.g. all launch and arrive at Mars together),
     likelihood of local DSN overload increases
- Mars launch opportunities occur every ~ 26 months (e.g. May 2018, July 2020)
  - Arrival at Mars is ~ 6 months later
- We have evaluated 2020-2021 Mars DSN Loading



#### DSN Loading in 2020-2021 (cont.)

- The DSN basically operates at capacity
- "Demand Excess" of ~ 30% (or more) is often seen years in advance when early, preliminary user requests are compared to antenna availability projections

- 2012: 30% (MSL)

**– 2014-2016: 28%** 

**– 2018-2019: 29%-34%** 

2020-2021: 26%-30% (latest study update in Jan 2018 with Sardinia antenna)

 The DSN scheduling process is resilient, reducing Demand Excess from ~ 30% (6+ months prior to execution) to < 15% (4 months prior), converging to eliminate residual conflicts by 3 months out



# 2020-2021 Mars DSN Loading Study Status in June 2017

New Mars missions launch in mid-2020 and arrive at Mars in early 2021 within ~ 8-week window

#### Mars Missions Operating Now or by 2020-21

- TGO (orbiter) assumed operating 2020-21
- MAVEN (orbiter) assumed operating 2020-21
- Curiosity (rover) assumed operating 2020-21
- INSIGHT (lander) assumed operating 2020-21
- MRO (orbiter) assumed operating 2020-21
- 6. MOM-1 (orbiter) – assumed operating 2020-21
- MER (rover) assumed operating 2020-21
- ODY (orbiter) assumed operating 2020-21
- MEX (orbiter) assumed NOT operating 2020-21

#### 2020-2021 New Mars Missions (6 with DSN Support)

NASA/JPL Mars 2020 (Rover) (EDL)



- 2. ESA ExoMars Rover and Surface Platform (RSP) (EDL)
- 3. SpaceX Red Dragon lander 1 (EDL)



- [SpaceX Red Dragon lander 2 (EDL)]
- 5. ISRO MOM-2 orbiter (MOI)



6. UAE EMM orbiter (MOI)



China NSSC 2020 Mars Mission (not directly supported by DSN)

Originally expected 8+ existing missions plus 7 new arrivals at Mars Accommodating all these missions in one part of the sky looked challenging



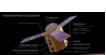
## 2020-2021 Mars DSN Loading Study Status in Jan 2018

New Mars missions launch in mid-2020 and arrive at Mars in early 2021 within ~ 8-week window

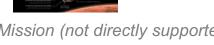
#### Mars Missions Operating Now or by 2020-21

- TGO (orbiter) assumed operating 2020-21
- MAVEN (orbiter) assumed operating 2020-21
- Curiosity (rover) assumed operating 2020-21
- INSIGHT (lander) assumed operating 2020-21
- MRO (orbiter) assumed operating 2020-21
- MOM-1 (orbiter) assumed operating 2020-21
- MER (rover) assumed operating 2020-21
- ODY (orbiter) assumed operating 2020-21
- MEX (orbiter) assumed NOT operating 2020-21

#### 2020-2021 New Mars Missions (3 with DSN Support)


NASA/JPL Mars 2020 (Rover) (EDL)




- 2. ESA ExoMars Rover and Surface Platform (RSP) (EDL)
- SpaceX Red Dragon lander 1 (EDL)



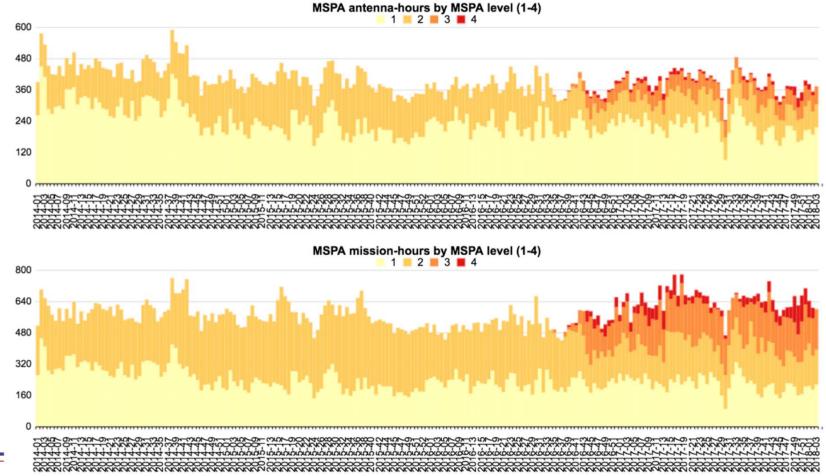
- [SpaceX Red Dragon lander 2 (EDL)]
- ISRO MOM-2 orbiter (MOI)



3. UAE EMM orbiter (MOI)



China NSSC 2020 Mars Mission (not directly supported by DSN)


Now expecting 8+ existing missions plus only 3 new DSN-supported arrivals

This is a more "typical" pattern in a Mars launch year



#### Mitigations to Anticipated DSN Loading

- Multiple Spacecraft per Antenna MSPA. Can currently support 4 spacecraft simultaneously with one DSN antenna
  - MSPA is not utilized to capacity and could accommodate additional Mars spacecraft
  - Missions requiring lots of 2-way tracking use MSPA less because the uplink must be shared



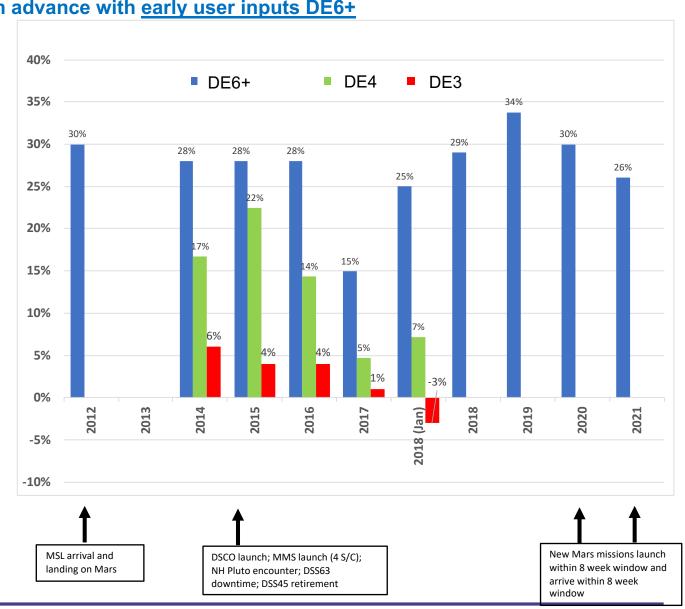
May 29, 2018 ------



## Mitigations to Anticipated DSN Loading (cont.)

- Two new DSN 34m BWG antennas in Madrid will come on line in 2020
  - Plus use of Sardinia antenna (part-time) reduces DSN loading by an additional 2% on average -- more during critical periods if strategically scheduled
- Sardinia, Morehead State University antennas and 4-MSPA can lessen impact of cubesats requesting deep space antenna coverage
  - Cubesats typically operate telecom only for short periods (thermal impacts)
- JPL Navigation is re-assessing amount of 2-way Doppler required for safe mission navigation. Some reductions appear to be possible, saving antenna time.
- Recent reduction in number of new DSN-supported Mars missions in 2020-2021 from 6 to 3 notably reduces DSN demand at Mars to more "typical" levels
- => DSN scheduling process is resilient, reducing Demand Excess from ~ 30% (6+ months prior to execution) to < 15% (4 months prior), converging to eliminate residual conflicts by 3 months out
- => Existing DSN scheduling methods, plus margin of safety from recent mitigations, should readily accommodate 2020-2021 Mars mission demand




## Mars DSN Antenna Demand and Scheduling Progression

(1) Demand Excess 6-48 months in advance with early user inputs DE6+

- (2) Demand Excess DE4 based on final user requests ~ 4 months before execution
- (3) Final schedule 3 months before execution has Demand Excess DE3 ( $\pm 4\%$ ), basically a conflict-free schedule.

Mitigations to further reduce loading:

- New 2020 Mars launches now reduced from 6 to 3 (M2020, EMM, RSP)
- Building two new 34m DSN antennas
- Augmenting DSN with more antennas (Sardinia, Morehead St, etc.)
- Adjusting DSN maintenance schedules to maximize availability at peak times
- Maximizing MSPA, revisiting missions' large requests for DSN 2-way Doppler
- Accommodating key and critical events during scheduling negotiations



May 29, 2018 SpaceOps 2018

#### SUMMARY

- ⇒ DSN scheduling process is resilient. A conflict-free schedule is determined approximately 12 weeks in advance of execution.
- ⇒ To guard against excessive antenna loading, the DSN has implemented mitigations that simultaneously reduce DSN antenna demand while increasing the supply
- ⇒ Reduction in number of Mars launches in 2020 further alleviates much of the anticipated increase in DSN antenna loading in 2020-2021 and beyond